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Euler Walk on a Cayley Tree
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We describe two possible regimes (dynamic phases) of the Euler walk on a Cayley
tree: a condensed phase and a low-density phase. In the condensed phase the area of
visited sites grows as a compact domain. In the low-density phase the proportion of
visited sites decreases rapidly from one generation of the tree to the next. We describe
in detail returns of the walker to the root and growth of the domain of visited sites in
the condensed phase. We also investigate the critical behaviour of the model on the line
separating the two regimes.
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1. INTRODUCTION

Consider a Cayley tree with arrows attached to every site. Initially the arrows point
at one of the adjacent sites randomly and independently of each other, see Fig. 1.
An Eulerian walker moves over the Cayley tree according to the following rules.
At time instants l = 0, 1, 2, . . . the walker jumps from its current location x(l) (at
one of the sites of the tree) to the adjacent site in the direction of the arrow at x(l).
At the time of jump the arrow at x(l) is rotated clockwise, till it points to another
adjacent site.

We assume that the generations of the tree are numbered from bottom to top.
Zero generation of the tree contains only the root. If k > l, then the generation
number k is above the generation number l on a picture of the tree, and we say
that the kth generation is higher than the generation number l.

Eulerian walkers were introduced by Priezzhev et al. (10) (see Ref. 9 for further
investigations) as a model of “self-organized criticality.” In their version of the
model the walker rotates arrows on arrival at a site of the graph. The two versions

1 Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna 141980, Russia;
e-mail: patrick@theor.jinr.ru

629

0022-4715/07/0500-0629/0 C© 2007 Springer Science+Business Media, Inc.



630 Patrick

Fig. 1. A Cayley tree with internal arrows arranged at random and independently of each other.
Boundary arrows always point inside the tree to prevent the walker from falling off the tree. At site a
the walker jumps in the direction of the arrow to site b, and the arrow at a is rotated clockwise to point
at site c. After that the walker jumps back to site a and then jumps to site c. At the time of the last
jump the arrow at a is again rotated clockwise to point at site d.

are largely equivalent, but in the version used in this paper it is easier to see on the
picture of a graph where the walker actually goes over the next few steps.

An attractive feature of the model on a finite graph with reflecting boundary
(the boundary arrows point inside the graph) is that eventually the walker settles
into an Euler circuit, where it passes every edge of the graph twice (once in every
direction). There is exactly one “clockwise” Euler circuit for any tree, see Fig. 2.
As a result of the walker’s activity, initially chaotically oriented arrows arrange
into an organized configuration directing the walker around that circuit.

If the Euler circuit on a tree is a critical state is not that clear. It is not difficult
to calculate correlation functions for orientations of the arrows at two sites of
a Cayley tree, assuming the uniform distribution of the current location of the
walker. For instance, let a1 and a2 be two arrows at sites in the generations k and
k + m of a finite tree containing n generations in total. Then

Pr[a1 =↘, a2 =↘] − Pr[a1 =↘] Pr[a2 =↘] → −2−2k−m, as n → ∞.

Hence, we have an exponential decay of correlations with the distance between
the arrows measured in generations of the tree. The same asymptotic behaviour
we obtain for all other correlation functions, although some of those are positive.

The above decay of correlations is in contrast to the behaviour found by Dhar
and Majumdar for the self-organized state of a sand pile on a Cayley tree, see Ref. 4.
Dhar and Majumdar found that the correlation functions decay as 4−m , where m is
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Fig. 2. The Euler circuit on a Cayley tree. The orientation of arrows corresponds to the current position
of the walker at the root of the tree.

the distance between the two sites of the tree. They concluded that the correlations
are short-ranged, because even after multiplication by the branching factor 2m one
still has an exponential decay to 0. Nevertheless they classified the self-organized
state of the sand pile on a Cayley tree as critical, presumably, because of power-law
tails in the distributions of avalanche-sizes and related quantities.

In our case the correlations decay as 2−m , and do not vanish after multiplica-
tion by the branching factor. Therefore one certainly can not rule out the criticality
of the Euler circuit on a tree on the basis of exponential decay of correlation
functions. Nevertheless one feels that the self-organized state in this case is closer
to the minimally stable state of the 1D sand pile, described in Ref. 2, than to a
truly critical state.

Our main goal in this paper is a description of the formation of an organized
structure on an infinite tree. We will show that, unlike what one sees on finite graphs
with reflecting boundary, on an infinite tree a (substantial density of) organized
structure is not always formed. Of course, if an organized structure is not formed
on an infinite tree, it is highly sensitive to the boundary conditions and appears
on a finite tree only as a result of numerous bounces of the walker against the
reflecting boundary.

To set the scenery for the study of Euler walk let us describe two possible
regimes of evolution: a condensed phase and a low-density phase. By (dynamic)
phases in this paper we mean not a particular distribution P[a] of arrows a, but a
particular type of evolution of those distributions Pt [a].
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To describe the condensed phase let us arrange all the arrows (except the
one at the root of the tree) downwards, along the edges of the tree. In this case
the walker starting at the root at time T0 = 0 returns to the root at time instants
T1 = 2, T2 = 8, T3 = 22, . . .. In general, the f th return to the root takes place at
the time instant T f = 2 f +2 − 2 f − 4.

There is a growing domain of visited sites—the explored domain—which
penetrates the kth generation of the tree at the time instant tk ≡ 2k+1 − k − 2,
k = 1, 2, . . .. At the time instant sk ≡ 2k+2 − 3k − 3 the domain swallows the kth
generation completely, and the walker heads toward the root.

If we denote gmax(t) the highest generation visited by the walker by the time
t , then the formula for tk yields

log2(t) − 1 ≤ gmax(t) ≤ log2(t), for t ≥ 4.

Analogously, if we denote gc(t) the number of generations completely explored
by the time t , then the formula for sk yields

log2(t) − 2 ≤ gc(t) ≤ log2(t) − 1, for t ≥ 3.

Thus, for the downward initial arrangement of the arrows, the growing explored
area is a “compact” domain of the tree. The height of the domain (measured in
generations) grows with time as log2 t . Below the highest visited generation the
density of visited sites is 1, above that generation the density of visited sites is, of
course, 0. This is the condensed phase of the Euler walk.

Another regime—the low-density phase—is obtained if we begin with the
upward (left or right) initial orientation of the arrows. In this case the walker goes
straight toward the top of the tree. The density of visited sites in the f th generation
at time t is 2− f +1 (for f ≤ t), which tends to 0 with f justifying the name the
low-density phase. Of course, once the walker reaches the top of the (finite) tree
it turns back and gradually stomps the whole graph. Therefore (as it should be) a
clear-cut distinction between the two phases exists only on an infinite tree.

For a random initial arrangements of the arrows we obtain a phase which is
a perturbation of either the condensed or the low-density phase. As we will see
in the following sections, the transition between the two phases takes place when
2 Pr[↖] + Pr[↗] = 1.

The rest of the paper is organized as follows. In Sec. 2 we investigate the
properties of the condensed phase: the returns of the walker to the root, and the
growth of the explored domain when 2 Pr[↖] + Pr[↗] < 1. In Sec. 3 we show
the absence of a compact domain of visited sites if 2 Pr[↖] + Pr[↗] > 1. In Sec.
4 we repeat the program of Sec. 2 at the critical point 2 Pr[↖] + Pr[↗] = 1.
Traditionally, the last section is devoted to a discussion of the results obtained in
the previous sections.
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2. THE CONDENSED PHASE

Let the internal arrows be initially arranged independently of one another,
and according to the distribution Pr[↖] = p, Pr[↗] = q, Pr[↓] = 1 − p − q. One
can map every initial configuration of arrows into a realization of a discrete-time
branching process according to the following rules.

Place a particle at the root of the tree. This particle produces exactly one
descendant—a particle which is placed at the site of the first generation of the tree.
From the first generation on, a particle produces either 0, or 1, or 2 descendants
depending on the initial direction of the arrow at the site occupied by the particle.
If the arrow points downward, then the particle does not have descendants. If the
arrow points up and right (like the arrow at the first-generation site on Fig. 3), then
the particle has exactly one descendant placed at the adjacent site in the direction
of the arrow. Finally, if the arrow points up and left, then there are exactly two
descendants placed at the two adjacent sites above, see Fig. 3.

The relevance of the branching process to our main problem stems from the
following fact. If the branching process degenerates, then the walker returns to
the root at a finite time-instant T1 equal twice the number of descendants in the
branching process (not counting the original particle at the root). The first-return
path encircles the particles in all generations of the branching process, which we
call below the first-return cluster.

Fig. 3. An initial arrangement of the arrows, the corresponding first return to the root of the Euler
walker (solid lines), the first-return cluster of the associated branching process (discs), and the buds
(spades). At the next visit to a site with buds an independent first-return cluster will grow from every
bud.
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The above correspondence between paths of the walker on Cayley tree and
realizations of the branching process allows one to employ the elegant technique
of generating functions and the main results from the theory of branching
processes. (6,5) First of all recall that if a particle produces k descendants with
probability pk , then the branching process degenerates with probability 1 if and
only if

∑∞
k=1 kpk ≤ 1. Hence, the time of the first return is finite with probability

1 if and only if q + 2p ≤ 1. The critical case q + 2p = 1 requires a special
consideration, therefore, in this section we consider only the case q + 2p < 1.

Lemma 1. Let q + 2p < 1, then the walker returns to the root for the first time
at an almost surely finite even time-instant T1, such that

m1 ≡ ET1 = 2

1 − (q + 2p)
;

Var T1 = 4(1 − q)

(1 − (q + 2p))3
− 4

1 − (q + 2p)
;

Pr[T1 =2k]∼
√

q
√

(1 − p − q)/p + 2(1 − p − q)

4πp
k−3/2

(
q + 2

√
p(1 − p − q)

)
k,

as k → ∞.

Proof: Denote X the number of descendants for a particle outside the root of
the tree. The probability generating function of X is given by

g(y) ≡ EyX = 1 − q − p + qy + py2. (1)

Denote Z the total number of descendants in the associated branching process. The
probability generating function of Z , f (x) ≡ Ex Z , is a solution of the equation,
see Refs. 5, 6,

f (x) = xg( f (x)).

Hence

f (x) = 1

2px

[
1 − qx −

√
(1 − qx)2 − 4p(1 − p − q)x2

]
.

Differentiating f (x) and taking into account T1 = 2Z , we obtain

m1 ≡ ET1 = 2

1 − (q + 2p)
, Var T1 = 4(1 − q)

(1 − (q + 2p))3
− 4

1 − (q + 2p)
.

The above generating function f (x) = ∑∞
k=0 pk xk often appears in the literature

on branching processes, see, e.g., the paper (7) by Otter. In particular, it is shown
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in that paper that the large-k asymptotics for pk = P[Z = k] is given by

pk ∼
√

q
√

(1 − p − q)/p + 2(1 − p − q)

4πp
k−3/2

(
q + 2

√
p(1 − p − q)

)k
,

(2)
which is the announced formula for P[T1 = 2k] in the statement of this
lemma. �

Remark 1. Denote Zk the number of particles of the associated branching pro-
cess in the kth generation of the tree. The random variable X is the number of
descendants produced by a single particle as in the proof of Lemma 1. Then the
distribution of the height of the first-return path, H1, is given by

Pr[H1 = k] = Pr[Zk+1 = 0] − Pr[Zk = 0].

It is shown in the book by Harris (6) that the large-k asymptotics of Pr[Zk = 0] is
given by

Pr[Zk = 0] ∼ 1 − c1(E X )k,

if E X < 1, where c1 is an unknown positive constant.
Hence in our case the distribution of H1 decays exponentially with k,

Pr[H1 = k] ∼ c(q + 2p)k .

Thus, during the first stage of exploration of the Cayley tree (0 ≤ t ≤ T1) the
walker stomps a first-return path with statistical properties described in Lemma
1. To visualize the motion of the walker after the first return to the root one can
imagine that, whenever a site is visited for the first time and X descendants are
produced in the associated branching process, the walker attaches 2 − X buds to
the site, see Fig. 3. During the second stage of exploration (after the first return
but before the second return to the root) the walker follows the first-return path,
but, whenever a bud is encountered, it wonders off the beaten track and appends to
the existing path a new circuit, which (unless hitting the boundary) is statistically
equivalent to the first-return path, see Fig. 4.

Lemma 2. Let the walker return to the root for the first time at time T1. Then
the first-return path has exactly 1 + 1

2 T1 attached buds.

Proof: Recall the following standard representation for the number of descen-
dants, Zk , in generations k = 2, 3, . . . of the associated branching process

Z2 = X (1)
1 ,

Z3 = X (2)
1 + X (2)

2 + · · · + X (2)
Z2

,
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Fig. 4. The initial arrangement of the arrows, the corresponding second return to the root for the Euler
walker (solid lines), and a new set of buds (spades).

Z4 = X (3)
1 + X (3)

2 + · · · + X (3)
Z3

,

and so on,

where X (l)
k is the number of descendants produced by the kth particle from the

lth generation. All the random variables X (l)
k are independent and have the same

distribution as the random variable X . Note also that Z1 = 1, and Zn+1 = 0
whenever Zn = 0.

Then we have the following formulae for the number of buds bk , in generations
k = 1, 2, 3, . . .

b1 = 2 − X (1)
1 = 2 − Z2,

b2 = 2 − X (2)
1 + 2 − X (2)

2 + · · · + 2 − X (2)
Z2

= 2Z2 − Z3,

b3 = 2 − X (3)
1 + 2 − X (3)

2 + · · · + 2 − X (3)
Z3

= 2Z3 − Z4,

and so on.

Since for q + 2p < 1 only a finite number of Zk have non-zero values, the total
number of buds on the first-return path is given by

B1 =
∞∑

k=1

bk =
∞∑

k=2

(2Zk−1 − Zk) = 1 +
∞∑

k=1

Zk .

The total number of descendants in all generations is 1
2 T1, hence B1 = 1 + 1

2 T1.
�
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Theorem 1. Let q + 2p < 1, then the Euler walker returns to the root infinitely
often at (almost surely finite) time instants T1, T2, T3, . . .. Moreover, the sequence
of normalized differences

Yn = Tn − Tn−1 + 2
(
1 + 1

2 ET1
)n , n = 1, 2, 3, . . . ,

is a positive and uniformly integrable martingale, E[Yn|Yn−1, . . . , Y1] = Yn−1.

Proof: In order to return to the root for the second time the walker has to repeat
the first-return path and to create new first-return circuits at each of the B1 buds.
Hence for the time of the second return to the root we obtain

T2 − T1 = T1 − T0 + τ
(2)
1 + τ

(2)
2 + · · · + τ

(2)
B1

,

where T0 = 0, and τ
(2)
j are independent random variables with the same distribution

as the first-return time T1. A verbatim repetition of the argument from the proof of
Lemma 2 shows that on each of the new circuits attached to the first-return path
the walker creates 1 + 1

2τ
(2)
j buds, j = 1, 2, . . . , B1. Hence the total number of

buds on the second-return path is given by

B2 = B1 + 1

2

B1∑

j=1

τ
(2)
j .

We have essentially the same scenario for any return to the root. For the time
of the nth return to the root we obtain

Tn − Tn−1 = Tn−1 − Tn−2 +
Bn−1∑

j=1

τ
(n)
j . (3)

The number of buds on the nth return path is given by

Bn = Bn−1 + 1

2

Bn−1∑

j=1

τ
(n)
j .

Since B1 = 1 + 1
2 T1, we can rewrite the last equation as

Bn =
Bn−1∑

j=1

b(n)
j . (4)

where b(n)
j = 1 + 1

2τ
(n)
j are independent random variables with the same distribu-

tion as B1.
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Induction and the obtained relationships for Tn and Bn yield

Bn = 1 + 1

2
(Tn − Tn−1), for any n ≥ 1. (5)

Indeed, Lemma 2 says that in the case n = 1 this formula is correct. Suppose that
the formula is also correct for n = k. Then the relationships for Bn and Tn yield

Bk+1 = Bk + 1

2

Bk∑

j=1

τ
(k)
j = 1 + 1

2
(Tk − Tk−1) + 1

2
(Tk+1 − Tk − Tk + Tk−1)

= 1 + 1

2
(Tk+1 − Tk).

Hence Bn = 1 + 1
2 (Tn − Tn−1) is also correct for n = k + 1, which completes the

induction.
Now one can calculate the following conditional expectation

E [Tn+1−Tn + 2|Tn −Tn−1+2] = Tn −Tn−1+2+ E

⎡

⎣
Bn∑

j=1

τ
(n+1)
j

∣
∣
∣
∣
∣
∣

Tn − Tn−1+2

⎤

⎦

=
(

1 + 1

2
ET1

)

(Tn − Tn−1 + 2).

Hence the sequence

Yn = Tn − Tn−1 + 2
(
1 + 1

2 ET1
)n , n = 1, 2, 3, . . . ,

is a positive martingale.
Since EYn = EY1 = 2, we have Pr[Yn < ∞] = 1, for any n, which implies

the almost sure finiteness of the return times Tn , n = 1, 2, . . ..
The relationship supn E(Y 2

n ) < ∞ is a well-known sufficient condition
for the uniform integrability of the sequence {Yn}∞n=1, see, e.g., the book by
Shiryaev. (11) In our case Eq. (3) yields

sn+1 ≡ E(Tn+1 − Tn + 2)2

= E(Tn − Tn−1+2)2+2E

⎡

⎣(Tn −Tn−1+2)
Bn∑

j=1

τ
(n+1)
j

⎤

⎦+ E

⎛

⎝
Bn∑

j=1

τ
(n+1)
j

⎞

⎠

2

.

On calculating the expected values with the help of the tower property we obtain
the following simple recurrent relationship

sn+1 = sn

(

1 + 1

2
ET1

)2

+ Var(T1)

(

1 + 1

2
ET1

)n

.
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Solving the recurrent relationship we obtain

sn+1 = 2

(

2 + ET 2
1

ET1

)(

1 + 1

2
ET1

)2n+1

− 2
Var(T1)

ET1

(

1 + 1

2
ET1

)n

. (6)

Hence

sup
n

sn
(
1 + 1

2 ET1
)2n

< ∞,

implying the uniform integrability of the martingale Yn , n = 1, 2, . . .. �

Corollary 1. Let q + 2p < 1, then for almost all initial arrangements of the
arrows

lim
n→∞

Tn − Tn−1 + 2

(1 + 1
2 ET1)n

= Y,

where Y is a random variable with a proper distribution (Pr[Y < ∞] = 1). The
expected value and the variance of the random variable Y are given by

EY = 2, Var(Y ) = 4Var(T1)

ET1(2 + ET1)
.

Proof: Since the sequence {Yn}∞n=1 is a positive martingale, the Doob mar-
tingale convergence theorem, see, e.g., the book by Shiryaev, (11) tells us that
limn→∞ Yn = Y , where Y is a random variable with a proper distribution. Since
the sequence {Yn}∞n=1 is uniformly integrable EY = limn→∞ EYn = 2.

Equation (6) yields

lim
n→∞ EY 2

n = 4 + 4Var(T1)

ET1(2 + ET1)
.

To show that EY 2 = limn→∞ EY 2
n , we need the uniform integrability of the se-

quence {Y 2
n }∞n=1. To that end one can use the sufficient condition supn EY 3

n =
supn E(Y 2

n )3/2 < ∞. One can check by a direct calculation similar to that used in
the proof of Theorem 1 that the sufficient condition is indeed satisfied. Hence

Var(Y ) = EY 2 − (EY )2 = 4Var(T1)

ET1(2 + ET1)
.

�

Corollary 2. Let q + 2p < 1, then

ETn = 2
2 + ET1

ET1

[(

1 + 1

2
ET1

)n

− 1

]

− 2n,
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Var(Tn) ∼ Var(T1)
(

1
2 ET1

)3

(

1 + 1

2
ET1

)2n+1

, (7)

lim
n→∞

Tn
(
1 + 1

2 ET1
)n+1

= 2Y

ET1
, almost surely,

where the random variable Y is identical to the one from Corollary 1.

Proof: Recall that the martingale {Yk}∞k=1 is defined by

Yk = Tk − Tk−1 + 2
(
1 + 1

2 ET1
)k

.

Taking the denominator to the l.h.s. and summing over k from 1 to n one obtains

Tn =
n∑

k=1

(

1 + 1

2
ET1

)k

Yk − 2n, (8)

where we have used T0 = 0. Since EYl = 2, a summation of the geometric series
yields

ETn = 2
2 + ET1

ET1

[(

1 + 1

2
ET1

)n

− 1

]

− 2n.

Equation (8), the martingale property E(Yk |Y f ) = Y f , for f < k, and
straightforward calculations yield the main asymptotics of the variance Var(Tn),
Eq. (7).

Since limk→∞ Yk = Y (almost surely), an application of a standard technique
from analysis to Eq. (8) yields

lim
n→∞

Tn
(
1 + 1

2 ET1
)n+1

= lim
n→∞

n∑

k=1

(

1 + 1

2
ET1

)k−n−1

Yk = 2Y

ET1
.

�

The last Corollary describes in detail the large-n behaviour of the nth return
time Tn in the subcritical regime, where ET1 < ∞. The following crude bound
will be helpful at the critical point.

Corollary 3.

Tn − Tn−1 ≤ Tn ≤ 2(Tn − Tn−1). (9)
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Proof: For the number of buds on the nth return (to the root) path we have
Bn ≥ 2Bn−1, hence Bn−l ≤ 2−l Bn . Summing Eq. (5) we obtain

Tn = 2

(
n∑

l=1

Bl − n

)

.

Therefore Tn ≤ 4Bn − 2n, and using Eq. (5) again we obtain

Tn − Tn−1 ≤ Tn ≤ 2(Tn − Tn−1).
�

Theorem 1 and its corollaries give a fairly comprehensive description of the
frequency of return to the root. Our next aim is a description of the height of the
domain of visited sites. Remark 1 describes the distribution of the highest visited
generation at time T1. Investigation of the height of the domain at later times is a
much more delicate problem. We will find the asymptotic behaviour of the density
of visited sites, vk(t), in the kth generation of the tree, defined as the ratio of the
number of sites visited by time t to the total number of sites, 2k−1, in the kth
generation.

In order to describe the growth of the domain of visited sites on the Cayley
tree, let us consider an arbitrary branch wn = (e1, e2, . . . , en) of the tree, where el ,
l = 1, 2, . . . , n are the segments (edges) of the branch, see Fig. 5. With any edge

Fig. 5. A branch w5 (path) of the Cayley tree, its edges (e1, e2, . . . , e5), and the associated random
“energies” (ε1, ε2, . . . , ε5). The energies of edges growing from the same site of the tree, like εa and
εb , are not independent.
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el one can associate an “energy” εl as follows. The energy of a left edge el (like
ea on Fig. 5) is equal to 0, if the arrow at the bottom of the edge el points along
the edge, and εk = 1 otherwise. The energy of a right edge el (like eb on Fig. 5)
is equal to 1, if the arrow at the bottom of the edge el points down, and εl = 0
otherwise. In other words, the energy of an edge el is equal to 1, if the arrow at
the bottom of the edge causes the walker to deviate from the Euler circuit, and the
energy is equal to 0 if the walker passes the edge “effortlessly.” The energy of a
branch wn is the sum of the energies of its edges.

The domain of visited sites swallows up the edges of a path wn as follows.
During the time interval [0, T1] (before the first return to the root) the domain
swallows all the edges of the path wn till the first obstacle—the first edge el with
εl = 1. During the time interval [T1, T2] (after the first return but before the second
return to the root) the domain of visited sites swallows up the edge el and all zero-
energy edges which follow el until the second obstacle—the second edge em with
non-zero energy, and so on. During the time interval [Tj , Tj+1] (after the j th return
but before the j + 1th return to the root) the domain of visited sites swallows up
all the edges between the j th and j + 1th edges with non-zero energy. Thus, the
number of visited sites in the kth generation at time Tm is equal to the number
of paths wk with less than m obstacles, or, equivalently, with the path energies
E(wk) = ∑

l:el∈wk
εl less than m.

Let us consider the following sum (partition function)

�k =
∑

wk

exp[−βE(wk)],

where the summation runs over all branches wk of a tree with k generations. We
have

�k =
k∑

n=0

#{wk : E(wk) = n} exp[−βn].

Hence, the large k limit of k−1 ln �k is the Legendre-transform of

ν(y) ≡ lim
k→∞

k−1 ln #{wk : E(wk) = [ky]},

where [ky] is the integer part of ky.
On the other hand, the sum �n is almost identical to the partition function

of a directed polymer on a Cayley tree, see Ref. 3. The difference between �n

and the partition function in Ref. 3 is that not all the energies εl are independent.
Indeed if two edges ea and eb grow from the same site of the tree, see Fig. 5, then

Pr[εa = 1, εb = 1] = 1 − p − q, Pr[εa = 0, εb = 1] = 0,

Pr[εa = 1, εb = 0] = q, and Pr[εa = 0, εb = 0] = p.
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Nevertheless, the large-k asymptotics of k−1 ln �k can be found by virtually ver-
batim repetition of the derivation from Ref. 3. In particular, if we denote Ak the
σ -algebra generated by the random energies of the first k generations of the tree,
and define

Mk = �k

[(2 − 2p − q)e−β + 2p + q]k−1
,

then the stochastic sequence {Mk,Ak}∞k=1 is a positive martingale, and EMk = 1.
Using the martingale technique from Ref. 3 we obtain.

Proposition 1. If 0 ≤ 2p + q < 1, then

f (β) ≡ lim
k→∞

k−1 ln �k =

⎧
⎪⎨

⎪⎩

ln[(2 − 2p − q)e−β + 2p + q], if β ≤ βc;

β

βc
ln[(2 − 2p − q)e−βc + 2p + q], if β ≥ βc;

(10)
where βc is the positive solution of

ln[(2 − 2p − q)e−β + 2p + q] = β(2p + q)eβ

2 − 2p − q + (2p + q)eβ
.

While if 1 ≤ 2p + q ≤ 2, then

f (β) ≡ lim
k→∞

k−1 ln �k = ln[(2 − 2p − q)e−β + 2p + q]. (11)

Lemma 3. The logarithmic asymptotics of the number of path wk with the
energy [ky], y ∈ (0, 1) is given by

ν(y) ≡ lim
k→∞

k−1 ln #{wk : E(wk) = [ky]}

=
[

y ln
2 − (2p + q)

y
+ (1 − y) ln

2p + q

1 − y

]+
, (12)

where [x]+ = max(x, 0) is the positive part of x .

Proof: The free energy f (β), given by Eqs. (10) and (11), is the Legendre
transform of the logarithmic asymptotics ν(y). Namely

f (β) = max
y∈[0,1]

[−βy + ν(y)] .

Therefore

ν(y) = min
β≥0

[βy + f (β)] .

Solving the minimization problem we obtain Eq. (12). �
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An inspection of the function ν(y) shows that there are around [2 − (2p +
q)]k branches wk containing k obstacles for the walker to overcome. At the same
time there are a few branches with only around [y∗k] obstacles, where y∗ ∈ (0, 1)
is a solution of the equation

y ln
2 − (2p + q)

y
+ (1 − y) ln

2p + q

1 − y
= 0.

Hence, there exists a growing with time gap, of the width m(1/y∗ − 1) generations
at time Tm , between the highest visited generation and the highest completely
explored generation of the Cayley tree. Therefore, neither generation is likely to
be a sensible measure of the height of the domain of visited sites.

It is a common practice in situations like that to concentrate ones attention
on typical branches of the tree. Therefore, we define the height of the domain of
visited sites as a number (function) H (t) ∼ h ln t , such that the density of visited
sites in generation x ln t at time t , vx ln t (t), tends to zero with t if x > h, and
vx ln t (t) → 1, if x < h. We will see shortly that this definition is a sensible one
for the problem under consideration. Of course, the choice of the asymptotic form
H (t) ∼ h ln t is specific to Cayley trees, and was actually made after the density
of visited sites was calculated.

The logarithmic asymptotics ν(y) attains its maximum, ln 2, at y = p + 1
2 q.

Hence, the typical branches wk have the energy E(wk) ∼ k(p + 1
2 q). Thus, the

domain of visited sites swallows up a typical branch wk of the tree after k(p + 1
2 q)

returns to the root.

Theorem 2. Let q + 2p < 1, then the height of the domain of visited sites, H (t),
grows as logarithm of time,

H (t) ∼ ln t
(

p + 1
2 q
)

ln
(
1 + 1

2 ET1
) .

Proof: As follows from Corollary 2, the number of returns to the root by time t
for the walker is given by

m ∼ ln t

ln
(
1 + 1

2 ET1
) ,

as t → ∞. The asymptotic number of obstacles in a typical branch wk of the
Cayley tree is given by k(p + 1

2 q), as k → ∞. Hence, the typical penetration after
m returns to the root is approximately m/(p + 1

2 q) generations, while the typical
penetration by time t is

H (t) ∼ ln t

(p + 1
2 q) ln

(
1 + 1

2 ET1
) generations.

�
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Unfortunately it is difficult to go beyond the logarithmic asymptotics ν(y) of
the number of paths wk with the energy E(wk) = [ky]. Nevertheless, one can guess
that the number of paths with the energy E(wk) ∼ k(p + 1

2 q) + √
ku is controlled

entirely by the quadratic term in the Taylor expansion for ν(y) at y = p + 1
2 q. If

this is indeed the case then, in the spirit of the local limit theorem, we obtain

#

{

wk : E(wk) = k

(

p+ 1

2
q

)

+
√

ku

}

∼ c√
k

exp

[

kν

(

p + 1

2
q

)

+ 1

2
ν ′′
(

p + 1

2
q

)

u2

]

= 2kc√
k

exp

[

− u2

2
(

p + 1
2 q
)(

1 − p − 1
2 q
)

]

. (13)

The density of visited sites in generation n at time Tm is given by

vn(Tm) = 1

2n−1

∑

f <m

# {wn : E(wn) = f } .

Approximating the sum by an integral (very much like in the normal approximation
to the binomial distribution) and taking into account Eq. (13) one obtains

vn(Tm) ∼ 1√
2πσ 2

∫ [m−n(p+q/2)]/
√

n

−∞
dx exp

(

− x2

2σ 2

)

, (14)

where σ 2 = (p + 1
2 q)(1 − p − 1

2 q).
We summarize the above discussion by a hypothesis which might well be

true.

Hypothesis 1. The width of the boundary of the domain of visited sites of size
n generations grows with n as

√
n. The drop of the density of visited sites on the

boundary from 1 to 0 is described by the error function, see Eq. (14).

Note that at the critical point 2p + q = 1 the variance σ 2 in Eq. (14) reaches
its maximal value, 1

4 , but remains finite. Therefore the density profile of the domain
of visited sites does not disintegrate as we approach the critical point. Instead, as
2p + q approaches 1, the walker tends to spend more and more time in long
(low-density) excursions away from the compact domain of visited sites. Those
long excursions do not create new compact visited domains, somewhat like water
poured into sand does not create puddles.

3. THE LOW-DENSITY PHASE

Let now q + 2p > 1. In this case the associated branching process degener-
ates with probability x∗ which is a solution of the equation x = g(x) less than 1, see
Refs. 5, 6, where the function g(x) is given by Eq. (1). That is, x∗ = (1 − q − p)/p.
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A routine application of the Borel-Cantelli lemma shows that in this case, with
probability 1, the Euler walker visits the root (and any given generation of the
tree) only a finite number of times.

Let k be large enough to guarantee that only one copy of the associated
branching process—the copy which does not degenerate—has survived until the
kth generation. Then the number of visited sites in the kth generation, Vk , (after
the last visit of the kth generation) does not exceeds the number of particles in
a single copy of the associated branching process. Namely, Vk ≤ W (q + 2p)k ,
where W is a random variable with a proper distribution (P[W < ∞] = 1). Since
q + 2p < 2 unless p = 1, we have Vk/2k → 0 as k → ∞. That is, the model is
in the low-density phase when q + 2p > 1.

The bound Vk ≤ W (q + 2p)k is a gross overestimation of the number of
visited sites. Most likely Vk does not grow faster than something like a constant
times ln k.

4. THE CRITICAL POINT

In this section we consider the critical case q + 2p = 1. Like in the subcritical
case q + 2p < 1, the associated branching process degenerates with probability
1 if q + 2p = 1. However the branching process becomes critical, and its proper-
ties differ substantially from those in the subcritical regime. As we shall see shortly,
the first moments of all relevant random variables are infinite if q + 2p = 1. As a
consequence, extraction of properties of the random variables from their generat-
ing functions is no longer straightforward.

Lemma 4. Let q + 2p = 1, then the walker returns to the root for the first time
at a finite (almost surely) time-instant T1, such that

Pr[T1 = 2k] ∼ 1

2
√

πp
k−3/2, as k → ∞. (15)

Proof: Analogously to the subcritical case, the probability generating function
of the total number of descendants, Z , is given by

f (x) = 1 + 1

2px

[
1 − x −

√
(1 − x)[1 − (1 − 4p)x]

]
. (16)

Using Eq. (2) we obtain

Pr[T1 = 2k] = Pr[Z = k] ∼ 1

2
√

πp
k−3/2, as k → ∞.

�
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Remark 2. The large-k asymptotics of Pr[T1 = 2k] makes it clear that ET1 = ∞.
It is still desirable to have a deterministic measure indicating likely values of the
first-return time T1. For that purpose one can use the quantiles Q1(x)—solutions of
the equation Pr[T1 ≤ Q1] = x . The asymptotic formula (15) yields the following
equation for approximate values of Q1(x)

1

2
√

πp

∞∑

k>Q1/2

k−3/2 = 1 − x .

Replacing the sum by an integral and solving the obtained equation for Q1(x) one
obtains Q1(x) ≈ 2

πp(1−x)2 . For values of x close to 1, the precision of the found
approximation for Q1(x) is quite reasonable. For instance, in the case p = 0.1 it
gives Q1( 3

4 ) ≈ 102, while the exact value is Q1( 3
4 ) = 98.

Remark 3. Like in the subcritical case, see Remark 1, asymptotic properties of
the distribution of the height of the first-return path, H1, follow from standard
results of the theory of branching processes. It is shown in the book by Harris (6)

that the large-k asymptotics of Pr[Zk = 0] in the case E X = 1 is given by

1 − Pr[Zk = 0] ∼ 1

pk
.

Hence, the distribution of H1 displays a power-law decay,

Pr[H1 = k] = Pr[Zk+1 = 0] − Pr[Zk = 0] ∼ 1

pk2
.

In order to investigate the distribution of the return to the root instants
T2, T3, . . . let us first find the probability generating functions G2(x), G3(x), . . .
for the number of buds B2, B3, . . . on the corresponding paths. Using Eq. (4) and
the tower property one obtains

Gn(x) = Ex Bn = E(x f (x))Bn−1 = Gn−1(ϕ(x)),

where ϕ(x) ≡ x f (x) is the generating function of B1, and f (x) is given by Eq.
(16). It is clear now that Gn(x) is the nth iteration of ϕ(x), that is,

Gn(x) = ϕ(ϕ(. . . ϕ(x) . . .))
︸ ︷︷ ︸

n times

.

Hence Gn(x) = ϕ(Gn−1(x)) as well.
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Theorem 3. Let q + 2p = 1, then the walker returns to the root infinitely often
at (almost surely) finite time instants T1, T2, T3, . . .. Moreover

Pr[Tn − Tn−1 = 2k] ∼ 1

2n	(1 − 2−n)p1−2−n k1+2−n as k → ∞. (17)

Proof: The probability Pr[Tn − Tn−1 = 2k] is given by the integral

Pr[Tn − Tn−1 = 2k] = 1

2π i

∫

C

Gn(z)

zk+2
dz,

where C is a sufficiently small closed contour encircling 0, and Gn(x) is the
probability generating function of Bn . To find the large-k asymptotics of this
integral we adapt the contour integration from Ref. 7. For that purpose we have to
know analytical properties of the generating functions Gn(x).

By definition

Gn(z) =
∞∑

l=0

Pr[Bn = l]zl,

hence the function Gn(z) is analytic inside the unit circle {z : |z| < 1}. Since
Gn−1(1) = 1, and Gn(z) = ϕ(Gn−1(z)), the point z = 1 is a branch point of Gn(z).
Since |Gn(eix )| < 1 for any real x ∈ (0, 2π ), the point z = 1 is the only singularity
of the function Gn(z) on the boundary of the unit circle {z : |z| < 1}.

From the explicit formula for the function ϕ(z) it is clear that the generat-
ing function Gn(z) has only a finite number of points of non-analyticity. Hence,
there exists a disc An = {z : |z| ≤ αn}, with αn > 1, such that z = 1 is the only
singularity of the functions Gk(z), k = 1, 2, . . . , n in An .

Denote Dn the boundary of the disc An with a radial cut running outwards
from x = 1. The generating function Gn(z) can be written as follows

Gn(z) = 1 − an(1 − z)2−n + (1 − z)2−n+1
fn(z), (18)

where fn(z) is analytic and bounded inside Dn: | fn(z)| ≤ b(p) < ∞. Indeed, we
already know that the function Gn(z) is analytic inside Dn . Since

fn(z) = Gn(z) − 1 + an(1 − z)2−n

(1 − z)2−n+1 ,

it must be analytic inside Dn as well.
To show that fn(z) is bounded inside Dn we can use induction. The function

f1(z) is obviously bounded in any circle with finite radius. Assume now that fn(z)
is bounded in any circle with finite radius for n = k, then for n = k + 1 we obtain

Gk+1(z) = ϕ(Gk(z)) = 1 −
√

ak

p
(1 − z)2−k−1 + (1 − z)2−k

fk+1(z),
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where

fk+1(z) =
(

1

2p
− 1

)[
ak − (1 − z)2−k

fk(z)
]

−(1 − z)−2−k−1

[
1

2p

√[
ak − (1 − z)2−k fk(z)

]
[1 − (1 − 4p)Gk(z)] −

√
ak

p

]

.

Hence fk+1(z) is bounded in any circle with finite radius as well, completing the
induction.

From the above equations we obtain the recurrent relationship ak+1 =√
ak p−1, with the initial condition a1 =

√
p−1. The solution of this recurrent

relationship is given by ak = p−1+2−k
.

On substitution of Eq. (18) in the integral representation for the probability
Pr[Tn − Tn−1 = 2k] we obtain

Pr[Tn − Tn−1 = 2k] = − an

2π i

∫

C

(1 − z)2−n

zk+2
dz + 1

2π i

∫

C

(1 − z)2−n+1
fn(z)

zk+2
dz =

= (−1)kan

(
2−n

k + 1

)

+ 1

2π i

∫

Dn

(1 − z)2−n+1
fn(z)

zk+2
dz.

Since the function fn(z) is bounded inside Dn , the remaining integral is of the
same order as

∫ αn

1

(1 − x)2−n+1

xk+2
dx = O

(
2−n+1

k + 1

)

.

Therefore

Pr[Tn − Tn−1 = 2k] ∼ 1

2n	(1 − 2−n)p1−2−n k1+2−n as k → ∞.

Finally, note that Pr[Tn − Tn−1 < ∞] = 1, and according to Eq. (9) we have
Tn ≤ 2(Tn − Tn−1). Hence, all return to the root instants Tn are almost surely
finite. �

Theorem 4. Let q + 2p = 1, then the median of the height of the domain of
visited sites grows with time as the iterated logarithm 2 log2 log2 t .

Proof: If q + 2p = 1, then the number of obstacles in a typical branch wk of a
Cayley tree is ∼k/2. Therefore it takes ∼k/2 returns to the root for the domain of
visited sites to reach the kth generation of the tree.
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The median m(n) of the duration of nth return loop satisfies

∞∑

k>m(n)/2

Pr[Tn − Tn−1 = 2k] ∼
∞∑

k>m(n)/2

1

2n	(1 − 2−n)p1−2−n k1+2−n = 1

2
.

Replacing the sum by an integral and solving the equation for m(n), we obtain

m(n) ∼ 22n
c,

as n → ∞. That is, with probability 1
2 , it takes over 22n

c time units for the walker
to complete the nth return path.

According to Corollary 3

Tn − Tn−1 ≤ Tn ≤ 2(Tn − Tn−1).

Hence the median of Tn is between 22n
c and 22n+1c once n is sufficiently large.

The kth generation of the tree is reached with probability 1
2 at a time t ∼

c 22k/2
. Solving the equation t = c 22k/2

for k, we obtain

k ∼ 2 log2 log2 t,

as t → ∞. �

5. DISCUSSION AND CONCLUDING REMARKS

The analysis of the previous sections can be generalised to the case of a Cayley
tree with the branching ratio b > 2 at the expense of extra technical efforts. Let the
arrow directions at every site be numbered counterclockwise 0, 1, 2, . . . , b starting
from the direction towards the root. Let also Pr[X = k] = pk , k = 0, 1, . . . , b be
the initial distribution of arrow directions at every site of the tree. Then we
can associate a realization of a branching process to every initial configuration
of arrows as follows. From the first generation on, a particle of the associated
branching process at a particular site of the tree has k ∈ {0, 1, . . . , b} descendants
if the arrow at that site points in the direction number k. The new particles
are placed immediately above the parent at the adjacent sites in the directions
1, 2, . . . , k.

The associated branching process is critical if
∑b

k=1 kpk = 1. Already for
b = 3 the explicit formula for the generating function of the total number of
particles in the branching process, f (x) = Ex Z , becomes very cumbersome. For
b > 4 we lose the luxury of explicit formulae completely. Nevertheless, the results
of Lemma 1 are not difficult to derive for the case of general b. For the condensed
phase the formulae for differentiation of implicit functions yield

m1 ≡ ET1 = 2

1 −∑b
k=1 kpk

;
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Var T1 = 4
∑b

k=0(k − 1)2 pk
(

1 −∑b
k=1 kpk

)3
− 4

1 −∑b
k=1 kpk

.

The tail of the first-return probability, P[T1 = 2k], can be described in terms of a
positive solution, x∗, of the equation

b∑

k=2

pk(k − 1)xk = p0.

Namely, see Ref. 7,

Pr[T1 = 2k] ∼
√

f (x∗)

2π f ′′(x∗)
k−3/2

(
f (x∗)

x∗

)k

,

as k → ∞.
We see that the properties of the first-return time for b > 2 are qualitatively

similar to the analogue results in the case of the branching ratio 2. In a similar way
all the conclusions of the previous sections can be generalized to the case b > 2,
and the generalization does not produce a novel behaviour.

Of course the Euler walk on a Cayley tree is only a toy version of Euler walks
on 2D or 3D lattices. Nevertheless we believe/hope that some of the main features
of the Euler walk described in this paper are also present in finite-dimensional
cases. In particular, we believe that finite-dimensional walks also have the con-
densed and the low-density phases, and a transition between them.

Martingales might prove to be also useful for investigation of the finite-
dimensional walks, but in what way and to what extent is yet to be discovered.
Some general properties of the growth of the domain of visited sites on 2D lattices
might be similar to those found in the present paper. In particular, the drop of
density from 1 to 0 in 2D case might still be described by the error function,
cf. Eq. (14). The relationship between the size of domain and fluctuations of its
boundary might still be the same square-root law as in Hypothesis 1. It is possible
to state a few more similar hypothesis, however, the last one already sounds very
bold, and it might be dangerous to continue any further. In any case, analytical
investigation of the growth of domain of visited sites for finite-dimensional lattices
looks like a very tough problem indeed.

Monte Carlo simulations for square lattices with equally likely initial direc-
tions of arrows at every site were conducted in Refs. 9 and 10. The simulations
show that for 2-D square lattice the radius of the domain of visited sites, R(t),
grows with time as R(t) ∼ c t1/3. It was also conjectured that on a 3-D square
lattice and in higher dimensions we have a diffusive behaviour, R(t) ∼ c t1/2, be-
cause the walker does not return to the cluster of visited sites frequently enough.
The last conjecture seems to imply that as the lattice dimension tends to infinity
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the behaviour of the walker does not become more and more similar to that of a
walker on a Cayley tree. However, on the basis of results obtained in this paper
one can put forward the following alternative interpretation of the “diffusive” be-
haiviour of the walker on a 3-D lattice. It might be the case that the Monte Carlo
simulations for 3-D lattices were simply conducted in the low-density phase where
a compact domain of visited sites is not formed. Changing the initial distribution
of arrows one can get into the condensed phase, where the radius of the domain of
visited sites grows, presumably, as R(t) ∼ cd t1/(d+1), converging to the (Cayley
tree) logarithmic behaviour as the lattice dimension d → ∞.

Something similar actually happens on Cayley trees as well. If we take
a Cayley tree with the branching ratio b = 2, then the equally likely initial
distribution of arrows p0 = p1 = p2 = 1

3 puts the walker at the critical point
p1 + 2p2 = 1. While if we increase the branching ratio to 3, then the equally
likely distribution p0 = p1 = p2 = p3 = 1

4 corresponds to the low-density phase
p1 + 2p2 + 3p4 > 1.

It was already known that branching processes are relevant to and, in fact,
provide a mean-field description for some model of self-organized criticality, see,
e.g. Refs. 1, 12. Although branching process are also relevant to Euler walks, the
latter apparently belong to a somewhat different class of models, since instead of
fixed values for the standard set of critical exponents, we have a whole spectrum
of those. Indeed, instead of the mean-field exponent τ = 3/2, describing the
distribution of the size of avalanches, we have the sequence τn = 1 + 2−n , n =
1, 2, . . ., beginning with 3/2.

Due to the infinite memory of the Euler walk it is difficult to calculate the
moments of the walker’s location, Exk(t). It is a pity, since the second moment of
the walker’s location for the simple random walk on, say, 2-D lattices, Ex2(t) = ct ,
is one of the main characteristics of that random process. To partially fill this gap
we will extract some information on the behaviour of the second moment from
the results obtained in the previous sections. This information might provide clues
for explanation of a bizarre behaviour of Ex2(t) for certain versions of Euler walk
on 2-D lattices. (8) It is instructive to compare at the same time the behaviour of
the Euler walk on a Cayley tree and the simple random walk on a 2-D square
lattice.

Both the Euler walk on a Cayley tree in the condensed phase and the 2-D
simple random walk are recurrent. Here, however, similarities end. While the
expected return-time (and even the variance) for the Euler walk is finite, the
expected return-time for 2-D random walk is infinite. As a consequence we have
monotonically increasing variance of the walker’s location for the 2-D random
walk, Ex2(t) = ct . On a Cayley tree the walker returns to the root at time instants
Tn with ETn < ∞, n = 1, 2, . . ., see the explicit formulae in Corollary 2. If
Var T1 � (ET1)2, then the returns to the root in the logarithmic scale take place
almost periodically, ln Tn ∼ n ln(1 + 1

2 ET1), as n → ∞. On the other hand, if
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Var T1 � (ET1)2, then the periodicity in the logarithmic scale turns into chaotic
behaviour without any visible pattern.

While in the latter case one can not rule out the monotonic increase of Ex2(t),
in the former case one certainly has a nearly periodic vanishing of Ex2(et ). If the
magnitudes of Var T1 and (ET1)2 are comparable one should have an intermediate
situation with visible deviations in the shape of Ex2(t) from a classic ctγ behaviour.
As we approach the critical point q + 2p = 1, the variance

Var T1 ∼ 4(1 − q)

[1 − (q + 2p)]3
,

grows faster than

(ET1)2 = 4

[1 − (q + 2p)]2
,

and we lose completely traces of the log-periodic behaviour.
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